Ir al contenido principal

Entrada destacada

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

Cometa 67P/Churyumov-Gerasimenko: Fuegos artificiales en el verano.


Copyright OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

23 septiembre 2016
Las breves pero potentes emisiones vistas en 67P/Churyumov-Gerasimenko durante su periodo de mayor actividad el año pasado han sido analizadas hasta dar con su origen en la superficie del cometa. 

Aunque se cree que la lenta erosión de la caras de los acantilados es responsable de algunos de los chorros regulares y más prolongados, el debilitamiento de una de estas paredes también podría provocar su derrumbamiento repentino, de noche o de día. Este derrumbamiento expondría cantidades sustanciales de materia nueva, lo que podría provocar una emisión aunque la región no estuviese expuesta a la luz solar.

Al menos uno de los eventos estudiados se produjo en la oscuridad, y podría deberse al derrumbamiento de uno de estos precipicios.
“El estudio prolongado del cometa nos ha permitido observar la diferencia entre la actividad ‘normal’ y las emisiones de corta duración, así como sus posibles desencadenantes”, aclara Matt Taylor, científico del proyecto Rosetta de la ESA. 

“Al analizar cómo estos fenómenos varían a medida que el cometa recorre su órbita alrededor del Sol obtenemos nuevos datos sobre la evolución de los cometas a lo largo de su vida”.


Copyright OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

Estos violentos estallidos iban mucho más allá de los chorros y flujos de materia que suelen salir expulsados del núcleo del cometa. Estos aparecen y desaparecen con precisión cronométrica en cada rotación, sincronizándose con la salida y la puesta del Sol en el cometa.

Por el contrario, las emisiones son mucho más brillantes que los chorros; se trata de breves proyecciones de polvo a alta velocidad. Normalmente solo se llegan a verse en una imagen, lo que indica que su duración es inferior al intervalo de captura, que es de entre 5 y 30 minutos.
Se cree que, en esos pocos minutos, cada emisión puede liberar entre 60 y 260 toneladas de materia.
De media, las emisiones alrededor del máximo acercamiento al Sol se produjeron una vez cada 30 horas, cada 2,4 rotaciones del cometa. Basándonos en la aspecto del flujo de polvo, podemos dividir las emisiones en tres categorías:
La primera se asocia a un chorro largo y estrecho, que se va alejando del núcleo. El segundo tipo de emisión implica una base ancha que se expande más hacia los lados. La tercera categoría muestra un complejo híbrido de los dos tipos anteriores.
“Como las emisiones son tan cortas que solo se capturan en una imagen, no podemos afirmar si una determinada imagen se capturó poco después de comenzar la emisión o más tarde en el proceso —explica Jean-Baptiste Vincent, autor principal del artículo publicado hoy en Monthly Notices of the Astronomical Society—. Así, no podemos saber si estos tres tipos de columna corresponden a distintos mecanismos o si se trata de distintas etapas de un único proceso”.
“No obstante, si se trata de un solo proceso, la secuencia evolutiva lógica sería que un chorro largo y estrecho de polvo se expulsa a alta velocidad, probablemente desde un espacio confinado.
“Después, a medida que cambia la superficie alrededor del punto de partida, un área mayor de materia nueva queda expuesta, ampliándose la ‘base’ de la columna”.
“Finalmente, cuando la región de origen se ha visto alterada hasta el punto de no poder soportar más el chorro, lo único que sobrevive es esa columna más ancha”.



La otra cuestión clave es qué origina estas emisiones.
El equipo descubrió que algo más de la mitad de estos eventos se producían en regiones correspondientes a la primera hora de la mañana, cuando el Sol comenzaba a calentar la superficie tras varias horas de oscuridad.
Así, se cree que el rápido cambio de la temperatura local provoca unas tensiones térmicas en la superficie que podrían llevar a la fracturación y exposición repentinas de materia volátil. Esta materia se calentaría con rapidez y terminaría por evaporarse de forma explosiva.

El resto de eventos se produjo tras el mediodía local, cuando la superficie había permanecido iluminada varias horas.
Estas emisiones se atribuyen a otra causa: el calor acumulado llegaría a bolsas de componentes volátiles enterrados bajo la superficie, provocando una vez más su calentamiento y estallido repentinos.
“El hecho de que existan puntos de emisión evidentes en la mañana y el mediodía indica, como mínimo, dos desencadenantes distintos para las emisiones”, reconoce Jean-Baptiste.
Pero también es posible que algunas emisiones tengan otra causa.
“Hemos visto que la mayoría de emisiones parecen originarse en los límites regionales del cometa, lugares con cambios en la textura o topografía del terreno local, como acantilados, fosas o nichos”, añade.


Efectivamente, el hecho de que también se aprecien rocas y otros residuos alrededor de estas regiones, identificadas como fuentes de las emisiones, confirma que estas áreas son especialmente susceptibles a la erosión.
Aunque se cree que la lenta erosión de la caras de los acantilados es responsable de algunos de los chorros regulares y más prolongados, el debilitamiento de una de estas paredes también podría provocar su derrumbamiento repentino, de noche o de día. Este derrumbamiento expondría cantidades sustanciales de materia nueva, lo que podría provocar una emisión aunque la región no estuviese expuesta a la luz solar.
Al menos uno de los eventos estudiados se produjo en la oscuridad, y podría deberse al derrumbamiento de uno de estos precipicios.
“El estudio prolongado del cometa nos ha permitido observar la diferencia entre la actividad ‘normal’ y las emisiones de corta duración, así como sus posibles desencadenantes”, aclara Matt Taylor, científico del proyecto Rosetta de la ESA. 
“Al analizar cómo estos fenómenos varían a medida que el cometa recorre su órbita alrededor del Sol obtenemos nuevos datos sobre la evolución de los cometas a lo largo de su vida”.

Nota para los editores

Summer fireworks on Comet 67P”, de J.-B. Vincent et al., está publicado en Monthly Notices of the Royal Astronomical Society.
El presente documento también utiliza información procedente de “Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P”, de J.-B. Vincent et al., publicado en Astronomy & Astrophysics en 2015.
De las 34 emisiones, 26 fueron detectadas con el teleobjetivo de OSIRIS, tres con la cámara de gran angular y otras cinco con la cámara de navegación
Para más información:
Jean-Baptiste Vincent
Max Planck Institute for Solar System Research, Gottingen, Alemania
Correo electrónico: vincent@mps.mpg.de
Matt Taylor

ESA Rosetta project scientist

Correo electrónico: matt.taylor@esa.int
Markus Bauer








ESA Science and Robotic Exploration Communication Officer









Teléfono: +31 71 565 6799









Móvil: +31 61 594 3 954









Correo electrónico: markus.bauer@esa.int

El Quelonio Volador

Comentarios

Entradas populares de este blog

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

‎Nebulosa Roseta: El Corazón de Una Rosa‎

‎La Nebulosa Roseta es una región de formación estelar cerca de 5.000 años luz de la Tierra.‎ ‎Rayos x de Chandra revela unos 160 Estrellas en el racimo conocido como NGC 2237 (lado derecho de la imagen).‎ ‎Combinado rayos x y óptico de datos, los Astrónomos determinaron que el cluster central formado en primer lugar, seguido por los vecinos unos incluyendo NGC 2237.‎ ‎Esta imagen compuesta muestra la región de formación estelar de Roseta, ubicada unos 5.000 años luz de la Tierra. Datos del Observatorio de rayos x Chandra son color rojo y delimitados por una línea blanca. Las ‎ ‎radiografías‎ ‎ revelan cientos de estrellas jóvenes agrupados en el centro de la imagen y racimos más débil adicionales a cada lado. Estos clusters están marcados en la única imagen de rayos x, donde son más evidentes a la vista. Óptico de datos de la encuesta sobre el cielo digitalizado y el Observatorio Nacional de Kitt Peak (púrpura, naranja, verde y azul) ver grandes áreas de gas y polvo, inclu

MESSIER 103 (M103)

Charles Messier (1730 – 1817) fue un Astrónomo francés conocido por su "Catálogo de Nebulosas y Cúmulos de Estrellas". Un ávido cazador de Cometa, Messier com piló un cat álogo de objetos de cielo profundo con el fin de ayudar a evitar que a otros entusiastas de los Cometa pierdan su tiempo estudiando los objetos que no eran Cometas. ‎ Créditos: R. Stoyan et al., Atlas de los objetos Messier: Aspectos más destacados del cielo profundo (Cambridge University Press, 2008) MESSIER 103 (M103) ‎Messier 103‎ ‎ (también conocido como ‎ ‎M103‎ ‎, o ‎ ‎NGC 581‎ ‎) ‎ ‎ Donde se forman unas mil estrellas en la ‎ ‎Constelación de‎ ‎ ‎ ‎Cassiopeia‎ ‎. Este cúmulo abierto fue descubierto en 1781 por ‎ ‎Charles Messier‎ ‎ y su amigo y colaborador ‎ ‎Pierre Méchain‎ ‎. ‎ ‎ ‎    Uno de los abiertos más lejanos grupos conocidos, con distancias de 8.000 a 9.500 ‎ ‎años luz‎ ‎ de la ‎ ‎Tierra‎ ‎ ‎ ‎ ‎ ‎ y que van cerca de 15 años de luz Apart. Hay cerca de 40 miembros estrellas M103,