Ir al contenido principal

Entrada destacada

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

Cuando los planetas se comportan como cometas

La ionosfera de Venus toma forma de cola de cometa


30 enero 2013
La sonda Venus Express de la ESA ha realizado un sorprendente descubrimiento: durante un periodo en el que la presión del viento solar era inusualmente baja, la ionosfera de Venus se expandió en su cara nocturna, como si se tratase de la cola de un cometa.
La ionosfera es una de las regiones más altas de la atmósfera, compuesta por partículas con una ligera carga eléctrica. El campo magnético del planeta determina en parte la forma y la densidad de su ionosfera.
En el caso de la Tierra, gracias a su fuerte campo magnético, la ionosfera se mantiene relativamente estable ante los cambios en la presión del viento solar. Sin embargo, Venus no tiene campo magnético propio, por lo que la forma de su ionosfera depende de la interacción con el viento solar.
Hasta qué punto la intensidad del viento solar podía alterar la ionosfera de un planeta había sido un tema controvertido, hasta que Venus Express observó por primera vez el comportamiento de la ionosfera de un planeta sin campo magnético ante una presión de viento solar inusualmente baja.
Estas observaciones se realizaron en agosto de 2010, cuando la sonda Stereo-B de la NASA detectó que la densidad del viento solar había disminuido hasta tan sólo 0.1 partículas por centímetro cúbico, unas 50 veces por debajo de su valor habitual. Esta extraordinaria situación se mantuvo durante unas 18 horas.
Cuando esta ráfaga de viento de baja densidad alcanzó Venus, la sonda europea Venus Express pudo observar cómo la ionosfera del planeta se expandía hacia su cara nocturna, situada a sotavento, tomando una forma muy parecida a la de las colas de iones que emiten los cometas en circunstancias similares.
“La ionosfera empezó a tomar forma de lágrima unos 30-60 minutos después de que disminuyese la presión del viento solar. En dos días terrestres, se había expandido a lo largo de una distancia equivalente a dos veces el radio del planeta”, explica Yong Wei, del Instituto Max Planck para la Investigación del Sistema Solar en Alemania, autor principal de la publicación que presenta estos resultados.
Este descubrimiento también zanja el debate sobre cómo afecta el viento solar al transporte de plasma ionosférico entre la cara diurna y nocturna del planeta.
En condiciones normales, esta materia fluye a lo largo de un estrecho canal en la ionosfera, pero los científicos no se ponían de acuerdo sobre qué ocurriría cuando el viento solar soplase con menos intensidad. ¿Aumentaría el flujo de plasma al ensancharse el canal como consecuencia de una menor presión de confinamiento? ¿O disminuiría el transporte al haber menos presión para empujar el plasma a lo largo de dicho canal?
“Por fin podemos afirmar que el primer efecto es de mayor magnitud que el segundo, lo que provoca que la ionosfera se expanda considerablemente cuando disminuye la presión del viento solar”, aclara Markus Fraenz, también del Instituto Max Planck y coautor de la publicación.
Los científicos piensan que se podría detectar un fenómeno similar en Marte, el otro planeta del Sistema Solar interior que no presenta campo magnético.

“Con frecuencia hablamos sobre los efectos del viento solar sobre las atmósferas de los planetas en periodos de alta actividad solar, pero Venus Express nos ha enseñado que incluso cuando el viento solar es más débil de lo habitual, el Sol es capaz de alterar considerablemente el entorno de nuestros vecinos planetarios”, añade Håkan Svedhem, científico del proyecto Venus Express para la ESA.

Crédito: Venus Express para la ESA.

Comentarios

Entradas populares de este blog

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

‎Depósito del Barranco Brillante en Terra Sirenum‎

NASA/JPL/University of Arizona ‎ Esta imagen muestra un depósito brillante quebrada y otras quebradas dentro de una pared de un cráter en Terra Sirenum (37,7 grados sur, 229,0 grados este). ‎ ‎Tres imágenes se encuentran disponibles: A) la imagen de la HiRISE de marco completo, con el cráter en el centro izquierda; el ancho de la imagen es de 6 kilómetros‎ ‎; B) ‎ ‎ ‎ ‎ampliación mostrando el cráter‎ ‎; y C) un ‎ ‎ ‎ ‎primer plano del yacimiento de Barranco brillante‎ ‎. Marcos B y C han sido estirados para mejorar contraste. El cuadro rojo en la B muestra la ubicación de C. ‎ NASA/JPL/University of Arizona NASA/JPL/University of Arizona ‎Como visto en A y B, el aspecto de la pared del cráter difiere entre los lados Sur y Norte. En las paredes de lado orientada al Polo Norte, cárcavas prominentes con canales y delantales son evidentes, con muchos de estos tienen alcobas valle-como cerca de sus cimas. La morfología de las cárcavas es consistente con la formación de un

Afloramiento de estratos en los depósitos estratificados del Polo Sur

NASA/JPL/University of Arizona Esta imagen abarca una sección de los Depósitos Estratificados del Polo Sur (DEPS). Los DEPS se componen de capas o estratos de hielo de agua mezclado con impurezas (la mayoría probablemente polvo). El análogo terrestre que puede parecerse a los DEPS son los mantos de hielo, como los que podemos encontrar cubriendo la mayor parte de Groenlandia o la Antártida. Los materiales de estas capas de hielo se depositan por la congelación del vapor de agua atmosférico sobre partículas de polvo y la precipitación posterior de estas partículas de hielo y polvo (en forma de nieve), por condensación directa (congelación) del vapor de agua atmosférico sobre la superficie, y la sedimentación de polvo. Ambos procesos combinados causan que el manto de hielo experimente un incremento en su volumen. También puede producirse ablación (retirada de material, también conocida como erosión) en un manto de hielo. Si hay mayor acumulación que ablación, el manto de hielo crec