Ir al contenido principal

Entrada destacada

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

La NASA resuelve un enigma. 25 de julio 2017

Drizzle over land
Rocio sobre la tierra. Crédito: Wikimedia Commons contribuyente GerritR, CC BY-SA 4,0

Un nuevo estudio de la NASA muestra que las corrientes ascendentes son más importantes de lo que se ha entendido previamente en la determinación de lo que hace que las nubes produzcan llovizna en lugar de las gotas de lluvia de tamaño completo, lo que revierte una hipótesis común.

El estudio ofrece una vía para mejorar la precisión en el clima y los tratamientos de las precipitaciones de los modelos climáticos, reconocidos como uno de los mayores desafíos para mejorar las previsiones meteorológicas a corto plazo y las proyecciones climáticas a largo plazo.

La investigación de científicos en el Laboratorio de Propulsión a Jet de la NASA en Pasadena, California; UCLA; y la Universidad de Tokio encontró que las nubes bajas sobre el océano producen más gotas de llovizna que el mismo tipo de nube sobre la Tierra. Los resultados se publican en línea en el diario trimestral de la Real Sociedad Meteorológica.

Las gotas de agua en las nubes se forman inicialmente en partículas microscópicas en el aire, o en aerosoles. Los científicos han estado estudiando el papel de los aerosoles en las nubes y la lluvia durante décadas. Hay más aerosoles sobre la tierra que sobre el océano, y los científicos habían pensado que los aerosoles adicionales tendería a formar más llovizna sobre la tierra también. El nuevo estudio muestra que la presencia de aerosoles por sí solos no puede explicar dónde se produce la llovizna.

Para entender qué más juega un papel, el líder del equipo de investigación Hanii Takahashi del JPL y el Instituto Mixto UCLA para la ciencia y la ingeniería del sistema regional de la tierra miraron hacia arriba las corrientes de aire caliente que se elevaban de la tierra calentada por el Sol. Dentro de las nubes altos, las corrientes ascendentes fuertes juegan un papel en la formación de la lluvia. En las nubes bajas, sin embargo, se sabe que las corrientes ascendentes son mucho más débiles, y no han recibido mucha atención científica en relación con la lluvia.

"Hubo una hipótesis previa de que las corrientes ascendentes podrían ser importantes", dijo Takahashi. "Pero la hipótesis nunca se había probado, y yo no estaba seguro de si las corrientes de aire eran lo suficientemente fuertes como para afectar el tamaño de las gotas de lluvia."

Dentro de las nubes altas, las corrientes ascendentes fuertes juegan un papel en la formación de la lluvia. En las nubes bajas, sin embargo, se sabe que las corrientes ascendentes son mucho más débiles, y no han recibido mucha atención científica en relación con la lluvia.

Los sistemas de medición existentes luchan por monitorizar directamente las velocidades ascendentes. Para inferir estas velocidades, el equipo de Takahashi combinó las mediciones de los satélites CloudSat y Aqua de la NASA y otras fuentes con datos de radar de nivel de tierra de un sitio de observación de energía del Departamento de Estados Unidos en las Azores.

Encontraron que las corrientes ascendentes en las nubes bajas sobre la tierra, mientras que más débil que las corrientes ascendentes en nubes altos, eran todavía bastante fuertes para guardar las gotitas de la llovizna en alto. A medida que las gotitas flotaban dentro de las nubes, continuaron creciendo hasta que las corrientes de aire no podían aguantar más. Luego cayeron como gotas de lluvia de tamaño completo.

En nubes similares que se formaron sobre el océano, las corrientes ascendentes eran aún más débiles que sobre la tierra. Como resultado, las gotitas cayeron de las nubes como llovizna, antes de que tuvieran la oportunidad de crecer en las gotas de lluvia de tamaño completo. Esto ayuda a explicar la preponderancia de llovizna sobre el océano.

Este hallazgo da una nueva visión del proceso atmosférico básico de la formación de lluvia, algo que es útil tanto en la previsión meteorológica como en el modelado climático. Takahashi espera que ayude a sus compañeros de modelismo climático a mirar más allá de los aerosoles en sus suposiciones sobre las nubes bajas. Estas nubes tienen un fuerte efecto en las proyecciones de las futuras temperaturas superficiales de la tierra. En la mayoría de los modelos, los supuestos que se utilizan actualmente para obtener temperaturas superficiales realistas resultan en un mundo inrealistamente lluvioso.

"Si hacemos que las velocidades ascendentes sean más realistas en los modelos, podríamos obtener lloviznas más realistas y proyecciones de temperatura superficial más realistas como resultado", dijo.

El tamaño del agua

Las moléculas de vapor de agua en el aire se condensan en partículas de aerosol llamadas núcleos de condensación de nubes y crecen en gotitas de diferentes tamaños. Aquí hay algunos diámetros relevantes:

--Un núcleo típico de la condensación de la nube es 0,0002 milímetros, o milímetro (cerca de 1.000 veces más grande que una molécula de agua).

--Una gotita típica de la nube es alrededor 0,02 milímetros (100 veces más grande que el núcleo de la condensación de la nube). Las gotitas de nubes no tienen suficiente masa para caer.

--Una gotita típica de la llovizna es 0,5 milímetros (25 veces más grande que una gotita de la nube). Llovizna es lo suficientemente pesado como para caer.

--Una gota de lluvia típica es cerca de 2 milímetros (100 veces más grande que una gotita de la nube y 4 veces más grande que llovizna).

Alan Buis
Jet Propulsion Laboratory, Pasadena, California
818-354-0474
Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen
NASA's Earth Science News Team

Traducción: El Quelonio Volador

Comentarios

Entradas populares de este blog

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

‎Nebulosa Roseta: El Corazón de Una Rosa‎

‎La Nebulosa Roseta es una región de formación estelar cerca de 5.000 años luz de la Tierra.‎ ‎Rayos x de Chandra revela unos 160 Estrellas en el racimo conocido como NGC 2237 (lado derecho de la imagen).‎ ‎Combinado rayos x y óptico de datos, los Astrónomos determinaron que el cluster central formado en primer lugar, seguido por los vecinos unos incluyendo NGC 2237.‎ ‎Esta imagen compuesta muestra la región de formación estelar de Roseta, ubicada unos 5.000 años luz de la Tierra. Datos del Observatorio de rayos x Chandra son color rojo y delimitados por una línea blanca. Las ‎ ‎radiografías‎ ‎ revelan cientos de estrellas jóvenes agrupados en el centro de la imagen y racimos más débil adicionales a cada lado. Estos clusters están marcados en la única imagen de rayos x, donde son más evidentes a la vista. Óptico de datos de la encuesta sobre el cielo digitalizado y el Observatorio Nacional de Kitt Peak (púrpura, naranja, verde y azul) ver grandes áreas de gas y polvo, inclu

MESSIER 103 (M103)

Charles Messier (1730 – 1817) fue un Astrónomo francés conocido por su "Catálogo de Nebulosas y Cúmulos de Estrellas". Un ávido cazador de Cometa, Messier com piló un cat álogo de objetos de cielo profundo con el fin de ayudar a evitar que a otros entusiastas de los Cometa pierdan su tiempo estudiando los objetos que no eran Cometas. ‎ Créditos: R. Stoyan et al., Atlas de los objetos Messier: Aspectos más destacados del cielo profundo (Cambridge University Press, 2008) MESSIER 103 (M103) ‎Messier 103‎ ‎ (también conocido como ‎ ‎M103‎ ‎, o ‎ ‎NGC 581‎ ‎) ‎ ‎ Donde se forman unas mil estrellas en la ‎ ‎Constelación de‎ ‎ ‎ ‎Cassiopeia‎ ‎. Este cúmulo abierto fue descubierto en 1781 por ‎ ‎Charles Messier‎ ‎ y su amigo y colaborador ‎ ‎Pierre Méchain‎ ‎. ‎ ‎ ‎    Uno de los abiertos más lejanos grupos conocidos, con distancias de 8.000 a 9.500 ‎ ‎años luz‎ ‎ de la ‎ ‎Tierra‎ ‎ ‎ ‎ ‎ ‎ y que van cerca de 15 años de luz Apart. Hay cerca de 40 miembros estrellas M103,