Ir al contenido principal

Entrada destacada

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

Mayo 25, 2017: Día tormentoso en Júpiter

Small bright clouds dot Jupiter's entire south tropical zone in this image acquired by JunoCam on NASA's Juno spacecraft on May 19, 2017.
Las pequeñas nubes brillantes salpican toda la zona tropical del sur de Júpiter en esta imagen adquirida por JunoCam en la nave espacial Juno de la NASA el 19 de mayo de 2017, a una altitud de 7.990 millas (12.858 kilómetros). Aunque las nubes brillantes aparecen minúsculas en esta vasta Jovian Cloudscape, en realidad son torres de nubes de aproximadamente 30 millas (50 kilómetros) de ancho y 30 millas (50 kilómetros) de altura que arrojan sombras en las nubes de abajo. En Júpiter, las nubes esta alta casi seguramente están compuestas de agua y/o hielo de amoníaco, y pueden ser fuentes de relámpago. Esta es la primera vez que tantas torres de nubes han sido visibles, posiblemente porque la iluminación de tarde es particularmente buena en esta geometría.

El Laboratorio de Propulsión a Chorro de la NASA administra la misión de Juno para el investigador principal, Scott Bolton, del Instituto de investigación del sudoeste en San Antonio. Juno es parte del programa de las nuevas fronteras de la NASA, que es administrado en el centro de vuelo espacial Marshall de la NASA en Huntsville, Alabama, para la dirección de la misión científica de la NASA. Los sistemas espaciales Lockheed Martin, Denver, construyeron la nave espacial. Caltech en Pasadena, California, maneja JPL para la NASA.

Image credit: NASA/SWRI/MSSS/Gerald Eichstadt/Sean Doran

Traducción: El Quelonio Volador

Comentarios

Entradas populares de este blog

El Quelonio Volador se ha trasladado...

Amigas, Amigos, el quelonio volador migró de plataforma, ya que en blogger no se puede arregla. www.elqueloniovolador.science los llevará a la nueva plataforma Todos los días repetiré hasta terminar las 9.400 entradas de esta mas lo nuevo. Espero les guste la nueva plantilla. La diferencia es el punto después de las www Rogelio Julio Dillon  El Quelonio Volador

‎Depósito del Barranco Brillante en Terra Sirenum‎

NASA/JPL/University of Arizona ‎ Esta imagen muestra un depósito brillante quebrada y otras quebradas dentro de una pared de un cráter en Terra Sirenum (37,7 grados sur, 229,0 grados este). ‎ ‎Tres imágenes se encuentran disponibles: A) la imagen de la HiRISE de marco completo, con el cráter en el centro izquierda; el ancho de la imagen es de 6 kilómetros‎ ‎; B) ‎ ‎ ‎ ‎ampliación mostrando el cráter‎ ‎; y C) un ‎ ‎ ‎ ‎primer plano del yacimiento de Barranco brillante‎ ‎. Marcos B y C han sido estirados para mejorar contraste. El cuadro rojo en la B muestra la ubicación de C. ‎ NASA/JPL/University of Arizona NASA/JPL/University of Arizona ‎Como visto en A y B, el aspecto de la pared del cráter difiere entre los lados Sur y Norte. En las paredes de lado orientada al Polo Norte, cárcavas prominentes con canales y delantales son evidentes, con muchos de estos tienen alcobas valle-como cerca de sus cimas. La morfología de las cárcavas es consistente con la formación de un

Afloramiento de estratos en los depósitos estratificados del Polo Sur

NASA/JPL/University of Arizona Esta imagen abarca una sección de los Depósitos Estratificados del Polo Sur (DEPS). Los DEPS se componen de capas o estratos de hielo de agua mezclado con impurezas (la mayoría probablemente polvo). El análogo terrestre que puede parecerse a los DEPS son los mantos de hielo, como los que podemos encontrar cubriendo la mayor parte de Groenlandia o la Antártida. Los materiales de estas capas de hielo se depositan por la congelación del vapor de agua atmosférico sobre partículas de polvo y la precipitación posterior de estas partículas de hielo y polvo (en forma de nieve), por condensación directa (congelación) del vapor de agua atmosférico sobre la superficie, y la sedimentación de polvo. Ambos procesos combinados causan que el manto de hielo experimente un incremento en su volumen. También puede producirse ablación (retirada de material, también conocida como erosión) en un manto de hielo. Si hay mayor acumulación que ablación, el manto de hielo crec